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ABSTRACT: Detailed comparisons of the carbon monoxide FTIR spectra and ligand-binding properties of
a library of E7, E11, and B10 mutants indicate significant differences in the role of electrostatic interactions
in the distal pockets of wild-type sperm whale myoglobin and soybean leghemoglobin. In myoglobin,
strong hydrogen bonds from several closely related conformations of the distal histidine (HisE7) side chain
preferentially stabilize bound oxygen. In leghemoglobin, the imidazole side chain of HisE7 is confined to
a single conformation, which only weakly hydrogen bonds to bound ligands. The phenol side chain of
TyrB10 appears to “fix” the position of HisE7, probably by donating a hydrogen bond to the Nδ atom of
the imidazole side chain. The proximal pocket of leghemoglobin is designed to favor strong coordination
bonds between the heme iron and axial ligands. Thus, high oxygen affinity in leghemoglobin is established
by a favorable staggered geometry of the proximal histidine. The interaction between HisE7 and TyrB10

prevents overstabilization of bound oxygen. If hydrogen bonding from HisE7 were as strong as it is in
mammalian myoglobin, the resultant ultrahigh affinity of leghemoglobin would prevent oxygen transport
in root nodules.

Myoglobin (Mb1) and leghemoglobin (Lb) perform similar
physiological roles in their respective environments. Both
facilitate the diffusion of oxygen by increasing its effective
concentration in either muscle (Mb) or root nodule (Lb)
tissue. Each protein exhibits the requisite rate constants for
transport, but Lb has a 20-fold higher affinity for oxygen
because it must maintain lower free oxygen concentrations
to prevent inhibition of the nitrogenase complex in the root
nodule (1, 2). The two proteins share a globin fold that
originally led to the assumption that they function similarly
at the molecular level (3). However, recent detailed studies
of soybean leghemoglobin (Lba) indicate that it uses a
mechanism to regulate ligand binding distinct from that of
Mb (4-9).

Mutagenesis studies have shown that proximal contribu-
tions to O2 affinity are quite different in Lba compared to
those in sperm whale Mb (6). In Lba, the plane of the HisF8

imidazole side chain is staggered with respect to the pyrrole
nitrogen atoms of the porphyrin ring. This orientation favors
in-plane movement of the iron atom and strong axial ligand
coordination. In all mammalian Mbs, the HisF8 side chain is
in an eclipsed geometry that inhibits ligand coordination
(10-12). These ideas were confirmed directly by swapping
the F helices between Lba and sperm whale Mb (6). Thus,
both stereochemical arguments and direct experimental
measurements show that the Lba proximal heme pocket
favors high oxygen affinity.

Stabilization of bound ligands by hydrogen bonding in the
distal pocket of Lba is weakened to prevent an ultrahigh O2

affinity that would inhibit transport in root nodules. This idea
is supported by comparative mutagenesis experiments with
recombinant Lbs and Mbs containing altered distal pockets
(4, 5, 13-15). HisE7 in Mb forms a strong hydrogen bond
with bound oxygen, and replacement with non-hydrogen-
bonding amino acids greatly decreases O2 affinity. In
contrast, homologous HisE7 substitutions in Lba have very
little effect on ligand affinity. Comparison of rate constants
for ligand binding to wild type and distal pocket mutants of
soybean Lba suggests that the unusual combination of HisE7

and TyrB10 works together to prevent HisE7 from forming a
strong hydrogen bond with bound O2 (5). To test this
hypothesis, we have used FTIR spectroscopy to examine
electrostatic fields and hydrogen-bonding interactions in the
vicinity of bound CO for a complete set of Lba and Mb distal
pocket mutants.

The IR spectrum of bound CO is a sensitive measurement
of hydrogen-bonding and electrostatic interactions near the
ligand (16-24). In native mammalian MbCO, the C-O
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stretching frequency (νCO) senses the proximity of the distal
His and whether the Nε-H tautomer is donating a proton to
the carbonyl O atom. The CO complexes of many Hbs and
Mbs display multiple stretching frequencies between 1900
and 2000 cm-1, with the majorνCO peaks designatedν0, ν1,
ν2, etc., in the descending order of their frequencies (19).
The structural origins of these multiple conformational
substates have been studied in great detail for sperm whale
MbCO. The designations A0, A1-2, A3 (Figure 1) represent
discrete conformations of ground-state native MbCO with
νCO peaks at 1965, 1945, and 1932 cm-1, respectively, based
on low-temperature time-resolved IR experiments by Frauen-
felder’s group and deconvolution analyses of room temper-
ature IR spectra by Caughey and co-workers (18, 19, 23,
25-28).

Li and Spiro (29) interpreted the variousνCO bands in
terms of different extents of back-bond donation from the
iron atom. They suggested that proton donors adjacent to
the O atom of the bound ligand enhance the degree of back-
bonding, increasing the order of the Fe-C bond and
decreasing the order of the C-O bond due to the formation
of Feδ(+)dCdOδ(-) resonance structures. The loss of hydro-
gen bonding or the presence of a negative electrostatic
potential would reverse these effects. Oldfield et al. proposed
short-range electric field-inducedνCO frequency shifts due
to 180° ring flips of the tautomers of the distal His and its
movement away from the bound ligand at low pH (30, 31).
It was assumed that the distal His dominates the interaction
with the bound ligand due to its proximity to CO and that
enhancement, weakening, or loss of interaction with this
residue accounted for all four conformers of MbCO.

More recently, Phillips, Olson, Franzen, and co-workers
considered longer range interactions from internal fields
arising from a sum of smaller interactions at a distance, as
well as specific short-range hydrogen-bonding interactions
with HisE7 and other adjacent amino acid side chains (19,
32). They concluded that, if the proximal geometry remains
invariant,νCO is a reflection of the electrostatic fields and
hydrogen-bonding interactions exerted by amino acid side
chains close to bound CO and by itself does not unambigu-
ously define a conformational substate (18, 19, 33). A
positive potential or strong hydrogen bond donation lowers

νCO, whereas a negative potential or loss of hydrogen bonding
increasesνCO. Phillips et al. (19) also showed that there is a
strong correlation between the average peak value,νjCO, and
the logarithm of the rate constant for O2 dissociation,kO2,
for a series of 20 different Mbs. Thus, in Mb bothνjCO and
kO2 reflect the strength of hydrogen-bonding interactions
between distal pocket amino acids and bound ligands.

In sperm whale MbCO, the principal CO stretching bands
areν0 ) 1965 cm-1, ν1 ) 1949 cm-1, ν2 ) 1942 cm-1, and
ν3 ) 1932 cm-1, which have been assigned to the A0, A1,
A2, and A3 conformational substates of the HisE7 side chain
(Figure 1;16, 21, 22, 25, 26, 34, 35). At neutral pH, the
dominant band is at 1945 cm-1 and represents an average
peak position for the A1 and A2 conformers, often simply
called A1. A minor A3 substate is observed atνCO ≈ 1932
cm-1 (18). At low pH, the distal His swings out into the
solvent, creating an apolar active site withνCO ) ∼1960
cm-1. This Mb conformer is designated the A0 substate.

In contrast, Lba shows a narrow CO stretching frequency
band at 1948 cm-1, indicating a single well-defined confor-
mation at neutral pH (Figure 1) (36). This result suggests
that the distal His in LbaCO is more restricted under
physiological conditions than in sperm whale Mb, which
exhibits significant conformational heterogeneity. In a series
of high-resolution NMR studies, Mabbutt et al. (37, 38)
observed that the imidazole ring of HisE7 in LbaCO appears
to be “flipped” with respect to the orientation in sperm whale
MbCO by a 180° rotation about the Câ-Cγ bond. As a
result, Nδ points upward, away from the heme plane and
toward the protein interior, but Nε is still close to the bound
ligand. The Nε-H tautomer of HisE7 must still be dominant
because theνCO peak of LbaCO (1948 cm-1) is similar in
position toνjCO for MbCO (1941 cm-1), even though the 7
cm-1 shift to higher frequency does indicate a weaker
hydrogen-bonding interaction in the plant protein.

Regulation of the position of HisE7 and its hydrogen-
bonding potential has been suggested as a possible mecha-
nism for attenuating ligand affinity in Lba (5). As described
above, FTIR spectroscopy is an ideal tool for assessing the
effects of distal pocket mutations on the electrostatic and/or
hydrogen-bonding environment of bound CO and for testing
structural mechanisms for regulation of ligand binding. In
the present study, CO stretching frequencies for a compre-
hensive set of distal pocket mutants of Lba have been
measured. The results have been compared to IR spectra of
equivalent mutants of sperm whale Mb. In both proteins,
TyrB10 appears to inhibit hydrogen-bonding interactions
between HisE7 and bound CO and O2 (5, 13). The new IR
and previous O2 binding and NMR results suggest that there
is a direct interaction between the HisE7 and TyrB10 side
chains in Lba that weakens stabilization of bound ligands.

MATERIALS AND METHODS

Preparation, Expression, and Purification of Proteins.
Site-directed mutant cDNAs were constructed, and recom-
binant Mbs and Lbs were expressed and purified as described
previously (4-6, 18). Mutations were introduced at the key
helix positions E7, E11, and B10 (Figure 2). Yellow lupine
leghemoglobin I (lupin Lb) cDNA in pET 3a was provided
by Dr. Pawel M. Strozycki, Institute of Bioorganic Chem-
istry, Polish Academy of Sciences, Poland. The lupin Lb

FIGURE 1: Comparison of the IR spectra of wild-type sperm whale
MbCO and soybean LbaCO. The spectrum of MbCO (solid line)
contains two majorνCO peaks, one at 1945 cm-1, representing a
combination of the A1 and A2 conformers, and another at 1932
cm-1, representing the A3 conformer with a stronger hydrogen bond
between HisE7 and bound CO. LbaCO (broken line) exists as a
single conformer with a peak at 1948 cm-1.

6242 Biochemistry, Vol. 43, No. 20, 2004 Kundu et al.



cDNA was subcloned into Novagen expression vector pET
29a betweenNdeI andEcoRI restriction sites and expressed
in Escherichia coliBL21(λDE3)-CodonPlus-RP cells (Strat-
agene) grown in 2× YT medium at 37°C. The medium in
shake flasks was supplemented with 50µg/mL kanamycin
and 25µg/mL chloramphenicol. Approximately 6.5 h after
inoculation, expression was induced with 0.5 mM IPTG.
After induction, the growth was continued for a further 15
h, resulting in red cell pellet. The lupin LbI protein was
purified in the same way as soybean Lba (6). Cowpea
leghemoglobin II (cowpea Lb) was purified according to
methods described previously (39). All samples were oxi-
dized and stored in the ferric form.

FTIR Spectroscopy and Kinetic Measurements.Samples
of CO-bound and deoxygenated Lba and Mb were prepared
in stoppered Eppendorf tubes equilibrated with 1 atm of
either CO or N2. Approximately 20µL of 2-3 mM protein
was aliquoted into this tube with a syringe. The Eppendorf
tube was then re-equilibrated with either pure CO or N2 gas.
One microliter of a 200 mM dithionite solution in 100 mM
phosphate buffer, pH 7.0, was added to the tube to reduce
any oxidized iron and to remove molecular oxygen. The tube
was vortexed and then spun in a microcentrifuge to remove
any precipitate. An airtight syringe, equilibrated with nitrogen
gas, was then used to draw LbaCO or deoxyLba from the
tube. The protein sample was rapidly added to a CaF2 BioCell
IR cuvette (5 mm thickness× 50 mm diameter, separated
by a 40 µm spacer; BioTools, Inc.) to obtain a uniform,
bubble-free film. Then the windows of the cuvette were
quickly sealed. The cuvette was placed in the sample
chamber of a Nicolet Nexus 470 FTIR spectrometer (Nicolet
Instrument Corp., Middleton, WI), which was purged with
nitrogen gas 1 h prior to and then during data collection.
Spectra were recorded from 1800 to 2100 cm-1 at 1 cm-1

resolution. Up to 128 interferograms were averaged for both
the HbCO and deoxyHb control samples. The final FeCO
FTIR spectra were corrected for buffer and protein back-
ground by computing LbaCO minus deoxyLba difference
spectra.

Most of the rate constants for CO and O2 binding were
measured previously (see references in Tables 1-3). The
parameters for any new mutants were determined as de-
scribed in Kundu et al. (5) and Rohlfs et al. (40).

Computations and Molecular Modeling.TyrB10 and HisE7

rotomers in the Lba-acetate structure (PDB 1BIN) were
suitably oriented in the program O (41) to incorporate the
imidazole conformation proposed by Mabbutt et al. (37, 38)
and to model possible interactions between TyrB10 and HisE7.
NMR chemical shifts for the protons in TyrB10 and HisE7

side chains were predicted for the proposed model structures
using the program SHIFTS (42).

RESULTS

HisE7 Hydrogen Bonds to Bound CO Less Strongly in Lba
than in Mb. CO bound to heme within a nonpolar distal
pocket typically yields a single IR peak near 1965 cm-1 and
is shifted to an average value of 1941 cm-1 in wild-type
Mb (Figure 3; Table 1) (18). This blue shift is due to the
positive electrostatic field created at the ligand by a hydrogen
bond donated from the distal His (18-20). The absorption
at 1948 cm-1 by wild-type LbaCO also implies a hydrogen
bond to the bound ligand, although a weaker one compared
to Mb. In Lba, HisE7 and TyrB10 could potentially serve as
proton donors (Figure 2).

The PheE7, LeuE7, and ValE7 mutants of Lba show single
bands at 1960, 1968, and 1969 cm-1, respectively, indicating
the loss of a hydrogen bond from the distal His (Figure 3;

FIGURE 2: Amino acid side chains in the heme pockets of (A) sperm
whale Mb and (B) soybean Lba. The polar side chains are in gray
and the apolar ones in black. The key amino acids (B10, E7, and
E11) are labeled. HisE7, the seventh residue on the E helix and
64th residue on the polypeptide chain, is the only polar side chain
in Mb close enough to directly interact with the bound ligand. In
Lba, however, both HisE7 (61st residue) and TyrB10 (30th residue)
are polar, but only HisE7 is close enough to the iron to interact
directly with diatomic ligands. The Mb and Lba structures were
taken from Quillin et al. (47) [Protein Data Bank (PDB) 2MBW]
and Hargrove et al. (4) (PDB 1BIN), respectively.

FIGURE 3: IR spectra of LbaCO and MbCO mutants with apolar
substitutions at position E7. The mutants are designated by a three-
letter abbreviation for the substituted amino acid with a super-
script denoting the position on the E helix. All of the spectra for
the E7 Mb mutants are shifted to higher frequencies due to the
loss of hydrogen-bonding interactions with HisE7. The E7 Lba
mutants show similar shifts to higher stretching frequencies.
However, the Lba mutants with smaller amino acids at E7 show
retention and broadening of the peak at∼1950 cm-1, presumably
due to interactions with water molecules entering the “empty”
distal pocket. The spectra for the MbCO mutants were taken from
Li et al. (18).

CO FTIR Spectroscopy of Leghemoglobin Biochemistry, Vol. 43, No. 20, 20046243



Table 1). These peaks are similar to those observed for CO-
heme complexes within a completely apolar binding pocket
and imply that TyrB10 makes no significant direct contribution
to the electrostatic environment of the bound ligand. In the
wild-type metLba structure (4), the TyrB10 side chain is too
far away from the iron atom to hydrogen bond directly with
bound ligands without significant movements of the B and
E helices (Figure 2). This conclusion is supported by the
close similarity of theνCO bands observed for the PheE7,
LeuE7, and ValE7 mutants, which contain TyrB10, and theνCO

band at 1965 cm-1 seen in the completely apolar LeuB10-
AlaE7 double mutant of Lba (Figure 4; Table 1). Conversely,
LeuB10 (which still contains HisE7) shows an IR band at much
lower frequency, indicating that a strong hydrogen bond can
be formed between bound CO and the distal His in the
absence of the Tyr side chain (Figure 4).

Water molecules in the exposed distal pockets of GlyE7

and AlaE7 MbCO broaden the observedνCO peaks (18, 19),
and a similar explanation probably accounts for the hetero-
geneity observed in the IR spectra of GlyE7 and AlaE7 LbaCO
(Figure 3). The spectrum of GlyE7 LbaCO is unusually broad,
with two obvious shoulders at 1952 and 1961 cm-1 (Table
1). The AlaE7 LbaCO spectrum has two distinct peaks. The
narrow band at 1969 cm-1 indicates a conformation with a
completely apolar environment near bound CO. The broad
band centered at∼1951 cm-1 (similar to that seen in GlyE7)
indicates favorable hydrogen-bonding interactions, presum-
ably with distal pocket water molecules. This interpretation
is supported by the IR spectrum of the LeuB10AlaE7 LbaCO
double mutant, which has no polar residues or stabilized
water molecules and shows a single narrow band centered
at νCO ) 1965 cm-1 (Figure 4; Table 1). The lack of any

hydrogen-bonding interactions in the double mutant is also
apparent from its much larger rate constant for O2 dissocia-
tion (kO2 ≈ 100 s-1) compared to those for wild-type LbaO2

(kO2 ≈ 6 s-1) and the two corresponding single mutants (kO2

≈ 1-3 s-1) (Table 2). Thus, although HisE7 is the main
source of polarity around bound ligands in Lba, hydrogen
bonding is relatively weak, and TyrB10 can have a significant
indirect influence. This results in differences in the electro-
static interactions with bound ligands in the distal heme
pockets of Lba and Mb.

Table 1: IR CO Stretching Bands for Soybean Lba, Sperm Whale Mb,a and Their Mutant Proteins at pH 7 and 25°C

protein
ν0

b (%)
(cm-1)

ν1,2 (%)
(cm-1)

ν3 (%)
(cm-1)

νCO
c

(cm-1) protein
ν0 (%)
(cm-1)

ν1,2 (%)
(cm-1)

ν3 (%)
(cm-1)

νCO

(cm-1)

wild-type Lbad 1948 (100) 1948 wild-type Mb 1945e (70) 1932e (30) 1941e
His61 (E7) mutants His64 (E7) mutants

GlyE7 1961 (48) 1952 (52) 1956 GlyE7 1965 (100) 1965
AlaE7 1969 (49) 1951 (51) 1959 AlaE7 1966 (100) 1966
ValE7 1969 (100) 1969 ValE7 1967 (100) 1967
LeuE7 1968 (100) 1968 LeuE7 1965 (100) 1965
PheE7 1960 (100) 1960 PheE7 1964 (100) 1964
TrpE7 1959 (38) 1940 (62) 1947 TrpE7 1969 (60) 1942 (40) 1958
TyrE7 1968 (55) 1953 (45) 1961 TyrE7 1966 (100) 1966
GlnE7 1957 (63) 1943 (37) 1952 GlnE7 1945 (100) 1945
LysE7 1968 (42) 1959 (58) 1962 LysE7 1965e (56) 1956e (44) 1961e
ArgE7 1957 (30) 1944 (34) 1940 (36) 1946 ArgE7 1958e (100) 1958e

Leu65 (E11) mutants Val68 (E11) mutants
ValE11 1948 (100) 1948 LeuE11 1941 (75) 1930 (25) 1938
PheE11 1948 (100) 1948 PheE11 1945 (64) 1932 (36) 1940

Tyr30 (B10) mutants Leu29 (B10) mutants
GlyB10 1966 (39) 1949 (26) 1927 (35) 1948 GlyB10 f f f f
AlaB10 1963 (29) 1949 (34) 1926 (37) 1944 AlaB10 1965 (6) 1947 (51) 1935 (43) 1943
ValB10 1967 (3) 1950 (41) 1927 (56) 1938 ValB10 1965 (6) 1946 (43) 1933 (51) 1941
LeuB10 1973 (5) 1951 (30) 1928 (65) 1937 IleB10 1965 (4) 1945 (48) 1932 (48) 1940
PheB10 1960 (13) 1951 (44) 1923 (43) 1940 PheB10 1932 (100) 1932
TrpB10 1961 (52) 1948 (39) 1925 (9) 1953 TrpB10 1956 (37) 1945 (63) 1949
ArgB10 1965 (75) 1948 (17) 1929 (8) 1958 ArgB10 f f f f

TyrB10 1981e (31) 1969e (39) 1931e (30) 1961e
double mutant double mutants

LeuB10AlaE7 1965 (100) 1965 TyrB10GlnE7 1934e (100) 1934e
TyrB10LeuE7 1968e (14) 1936e (86) 1940e

a Data taken from Li et al. (18) unless mentioned otherwise.b The frequency of the IR band was determined by the peak position, with estimated
experimental error(1 cm-1; the intensity of the IR band was determined by the peak height and was normalized to the strongest band with
estimated experimental error(10%. c The value ofνCO is a weighted measurement of the IR CO spectral components, as computed byνCO ) Σfiνi,
wherefi is the fraction of intensity measured by peak height andνi is the peak frequency of spectral componenti. d Four conformers were tentatively
assumed in Lba for comparison with Mb.e Measured by the authors.f Data not available.

FIGURE 4: Comparison of the IR spectra of (A) wild-type LbaCO
and (B) B10/E7 mutants of LbaCO. When TyrB10 is replaced with
Leu (LeuB10, - - -), a major band at a very low frequency is observed.
AlaE7 LbaCO (‚‚‚) shows a broad band at the “normal” frequency
and another narrow band at high frequency. In contrast, the double
mutant (LeuB10AlaE7, s), from which both of the polar side chains
have been removed, shows only a single narrow band at high
frequency (Table 1).
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Role of the B10 Side Chain in Positioning HisE7 in Mb
and Lba.An important difference between Lba and Mb is
the Tyr found at the B10 helical position in the former instead
of an apolar Leu in the latter (Figure 2). Replacement of
TyrB10 in LbaCO by any other amino acid, irrespective of
size or polarity, results in the appearance of multipleνCO

peaks (Figure 5; Table 1). In general, the IR spectra of the
B10 mutants are mixtures of high- and low-frequency bands,
which are completely absent in wild-type LbaCO. The low-
frequencyνCO peaks for the B10 LbaCO mutants are at
∼1926 cm-1, which is significantly lower than those seen
in the B10 mutants of sperm whale MbCO (∼1932 cm-1,
Figure 5; Table 1). The low-frequency peaks in the Lba B10
mutants must be due to conformations in which the distal
His forms a much stronger hydrogen bond with bound CO
than that in the native protein. This interpretation in terms
of more favorable electrostatic interactions is supported by
the uniform decrease in the rate constant for O2 dissociation
from all of the B10 mutants compared to wild-type LbaO2

(Table 2).
The averageνCO for the apolar B10 LbaCO mutants is

lower than that of wild-type LbaCO (Table 1). However,
there are also bands in the 1960-1970 cm-1 range, indicating
conformations with completely apolar binding sites and no
interaction with the distal His. Thus, when TyrB10 in Lba is
replaced by other amino acids, the side chain of HisE7 adopts
multiple orientations, some of which involve formation of
strong hydrogen bonds with bound ligands and some of
which involve no interaction at all. In contrast, apolar B10
mutations in Mb only enhance the low-frequency band
associated with the A3 conformer (νCO ≈ 1932 cm-1). Little
or no intensity associated with high-frequency bands atνCO

) 1960-1970 cm-1 is seen (Figure 5; Table 1). The IR

spectrum of PheB10 MbCO has a single band at 1932 cm-1.
The crystal structures of PheB10 MbCO and MbO2 show that
HisE7 is fixed in a more A3-like conformation and the positive
edge of the benzyl side chain points toward the bound ligand
(18). This conformation causes a∼10-fold decrease in the
rate of O2 dissociation from PheB10 MbO2 compared to that
from the wild-type protein (Table 2;43).

The TrpB10 mutations in both LbaCO and MbCO cause a
shift in νjC-O to higher frequencies, and there is minimal
appearance of strong low-frequency bands in the 1920-1935
cm-1 region (Table 1). In these cases, the large size of the
indole ring appears to be “pushing” the distal His away from
bound ligands. The ArgB10 mutation in LbaCO causes a more
significant effect, increasingνjC-O from 1948 to 1958 cm-1,
suggesting that the HisE7 side chain has been pushed out into
the solvent. Because the B10 side chain in Lba is too far
from the active site, the guanidino group of ArgB10 cannot
access the bound ligands either to interact favorably with
them (Figure 2).

The TyrB10 mutation produces the largest effect on the IR
spectrum of MbCO, causing the appearance of multiple bands
from 1931 to 1980 cm-1 (Figure 5). Thus, a Tyr side chain
at the B10 position in Mb has the opposite effect of that
observed in Lba. The phenolic side chain in Mb causes
multiple conformations with positive and negative fields
adjacent to the bound ligand. This interpretation is supported
by the multiple phases seen for O2 dissociation from TyrB10

MbO2 (13; Table 2). In contrast, the TyrB10 side chain in
native Lba “traps” HisE7 in a single conformational state,
which can only donate a weak hydrogen bond to bound
ligands. When TyrB10 is replaced by Leu in LbaCO (a distal
pocket akin to Mb), HisE7 is able to adopt a conformation
with a much stronger hydrogen bond to bound ligands as

Table 2: Correlations between IR CO Stretching Bands and Ligand Binding Parameters for Lba and Sperm Whale Mba at pH 7 and 25°C

protein
νCO

(cm-1)
kCO

(s-1)
KCO

(µM-1)
kO2

(s-1)
KO2

(µM-1) protein
νCO

(cm-1)
kCO

(s-1)
KCO

(µM-1)
kO2

(s-1)
KO2

(µM-1)

wild-type Lba 1948 0.0084 1800 5.6 23 wild-type Mb 1941 0.019 27 15 1.1
His61 (E7) mutants His64 (E7) mutants

GlyE7 1956 0.0066 15000 3.6 97 GlyE7 1965 0.038 150 1600 0.09
AlaE7 1959 0.0061 14000 3.1 93 AlaE7 1966 0.061 69 2300 0.025
ValE7 1969 0.0016 75000 27 10 ValE7 1967 0.048 150 10000 0.011
LeuE7 1968 0.0024 70000 24 17 LeuE7 1965 0.024 1100 4100 0.023
PheE7 1960 0.013 1800 280 0.45 PheE7 1964 0.054 83 10000 0.0074
TyrE7 1961 0.011 130 3.1 1.3 TyrE7 1966 0.092 5.4 3200 0.0021
TrpE7 1947 0.0098 3 7.8 0.04 TrpE7 1958 0.023 28 87 0.071
GlnE7 1952 0.0094 7500 3.6 72 GlnE7 1945 0.012 82 130 0.18
LysE7 1962 0.0048 13000 2.9 100 LysE7 1961 0.038 195 760 0.12
ArgE7 1946 0.006 13000 0.2 1200 ArgE7 1958 0.014 400 880 0.09

Leu65 (E11) mutants Val68 (E11) mutants
ValE11 1948 0.0069 2000 5.8 30 LeuE11 1938 0.011 48 6.8 3.4
PheE11 1948 0.0036 8300 1.8 105 PheE11 1940 0.018 14 2.5 0.48

Tyr30 (B10) mutants Leu29 (B10) mutants
GlyB10 1948 0.0054 1300 0.8 75
AlaB10 1944 0.011 1200 0.9 84 AlaB10 1943 0.019 14 18 0.8
ValB10 1938 0.006 1800 0.3 80 ValB10 1941 0.016 11 8.3 1.1
LeuB10 1937 0.0054 2000 0.5 74 IleB10 1940 0.018 13 10 0.86
PheB10 1940 0.0068 1600 0.75 100 PheB10 1932 0.006 37 1.4 15
TrpB10 1953 0.0073 9600 1.1 175 TrpB10 1949 0.008 0.48 8.5 0.029
ArgB10 1958 0.0091 1100 1.3 35 TyrB10 1961 0.11b ∼3.0b 20000b ∼0.001b

∼0.004b 200b ∼0.010b

-0.01 20b

double mutant double mutants
LeuB10AlaE7 1965 0.0028 58000 96 6 TyrB10LeuE7 1940 0.011c 91c 14c 1.6c

TyrB10GlnE7 1934 0.014b 5.1b 1.6b 1.8b

a Data taken from Li et al. (18) and Kundu et al. (5). b Data from Draghi et al. (13). c Measured by the authors.
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seen by the appearance of a majorνCO band at 1926 cm-1

(Figure 5). This conclusion is supported by the 10-fold drop
in the rate of O2 dissociation from the same Lba mutant
(Table 2).

Polar Mutations at the E7 Position.As shown in Figure
6, the native TyrB10 side chain in Lba also affects the position
of polar amino acids when they are inserted into the E7
helical position as compared to their positions in analogous
E7 mutants of Mb. The most dramatic differences between
the two proteins are observed for the single ArgE7 mutants.
In ArgE7 MbCO, a single, narrow high-frequency band at
1958 cm-1 is observed (Figure 6) and has been interpreted
in terms of the ArgE7 guanidino group pointing into the
solvent, as has been observed in Hb Zurich (â HisE7fArg)
(44-47). In contrast, several bands are observed for ArgE7

LbaCO (Table 1). The majority of the conformers occur at
relatively low frequencies in the 1940-1945 cm-1 region
(Figure 6), indicating a positive electrostatic field adjacent
to bound CO. More remarkably, the HisE7fArg mutation
in Lba causes the rate constant for O2 dissociation to decrease
by ∼30-fold, indicating that an even stronger stabilizing
interaction occurs when dioxygen is bound (Table 2). In
contrast, the HisE7fArg mutation in Mb causeskO2 to
increase from 15 to∼1000 s-1, indicating the loss of
stabilizing electrostatic or hydrogen-bonding interactions.

Taken together, these spectroscopic and ligand-binding
data suggest that the guanidino group of ArgE7 can remain
in the distal pocket of Lba. In the CO complex, the side
chain adopts multiple conformations. The guanidino group

can either swing out into solvent, causing an apolar active
site and an increase inνCO, or remain in the pocket, causing
an increase in the electrostatic field near the bound ligand
and a decrease inνCO. The latter “in” conformation appears
to be the dominant one when ArgE7 Lba binds O2, as judged
by the dramatic decrease inkO2 (Table 2). The TyrB10 hy-
droxyl O atom probably helps to stabilize the “in” conforma-
tion by acting as a hydrogen bond acceptor for the guanidino
group, and the partial negative charge on bound O2 provides
additional electrostatic stabilization. In Mb, the naturally
occurring LeuB10 side chain cannot facilitate internalization
of the ArgE7 side chain, and the free energy released by
solvation of the guandino group out-competes any weak,
favorable interaction with bound ligands. In addition, the size
of the distal pocket in Mb is smaller and probably cannot
easily accommodate the large ArgE7 side chain.

The effects of the HisE7fLysE7 mutation on the IR spectra
of MbCO and LbaCO are much more similar than in the
case of the ArgE7 replacement (Figure 6). In both proteins,
most of the absorbance occurs at higher frequencies, indicat-
ing that the dominant conformations have the primary amine
pointing out of the pocket, increasing the apolar character
of the ligand binding site. The GlnE7 mutations in both
proteins cause little change in the averageνCO value but do

FIGURE 5: IR spectra of B10 mutants of soybean LbaCO and sperm
whale MbCO. All of the Lba mutants show multiple peaks,
including at least one low-frequency band. Most of the B10
mutations in Mb change only in the proportion of theν1 versusν3
bands, with PheB10 MbCO showing only a single conformer atν3
) 1932 cm-1. In contrast, the TyrB10 mutation in MbCO causes
the appearance of a major high-frequency band at 1969 cm-1. The
spectra for the Ala, Val, Ile, and Phe B10 Mb mutant proteins were
taken from Li et al. (18); the other spectra were measured in this
work.

FIGURE 6: IR spectra of LbaCO and MbCO mutants with charged
or polar residues at position E7. ArgE7 MbCO shows a single, high-
frequency peak indicating that this residue does not interact with
bound CO. In contrast, ArgE7 LbaCO shows multiple bands with
significant populations of conformers having lowerνCO, suggesting
that this side chain can form hydrogen bonds with bound CO. The
LysE7 mutants for both, however, are predominantly in conforma-
tions with higherνCO and possibly have their side chains swinging
out of the distal heme pocket. GlnE7 MbCO and LbaCO show peak
positions similar to those of the wild-type proteins, but the bands
are broader. TyrE7 in MbCO exclusively provides an apolar
environment to bound CO, whereas TyrE7 in LbaCO provides some
positive potential as well. TrpE7 MbCO and LbaCO show a
conformer with lowerνCO in addition to a higher one. The spectra
for ArgE7 and LysE7 MbCO mutant proteins were measured for this
work, and the others were taken from Li et al. (18).
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broaden the major bands, presumably due to the flexible
nature of the amide side chain and the potential for elec-
trostatic interactions with either the carbonyl O atom or the
amide protons.

The TyrE7 substitutions cause shifts to higher frequencies
in both proteins, suggesting that either the phenolic side chain
moves out of the active site or that the nonbonded electrons
of the phenoxyl O atom are pointed toward the bound ligand.
In MbCO, the former interpretation probably applies because
a single, narrow band is observed at 1966 cm-1. In LbaCO,
a narrow band is observed at 1968 cm-1, but a large, broad
band also occurs around 1950 cm-1 and is similar to that
seen for the AlaE7 LbaCO complex. The TrpE7 mutant
proteins of Lba and Mb show two principal conformers. The
dominant conformer in LbaCO has a low-frequency band at
νCO ) 1939 cm-1, whereas the dominant conformer in MbCO
has a high-frequency band at 1969 cm-1 (Figure 6; Table
1). The indole N-H group or the positive edge of the
aromatic multipole of TrpE7 probably interacts with bound
CO in the low-frequency conformers of both proteins,
resulting in the appearance of bands in the 1940 cm-1 region
(18).

LeuE11 in Lba Has Little Effect on Hydrogen Bonding.
ValE11 in Mb is important for maintaining the appropriate
distal pocket volume for ligand binding and prevention of
autoxidation (47), and mutations at this position have been
found to influence the MbCO IR spectra significantly (18,
19, 47-49). As seen in Figure 7A and Table 1, even
relatively subtle mutations at the E11 position in Mb affect
its IR spectrum. However, the corresponding Lba mutant
proteins leave the IR spectra completely unaltered (Figure
7B). Apolar replacement of LeuE11 in Lba also has only small,
subtle effects on protein stability and ligand-binding kinetics
(5). The crystal structure of Lba shows that the naturally
occurring LeuE11 side chain is behind the distal His, almost
on the far interior side of the ligand-binding site compared
to the position of ValE11 in Mb (4). Therefore, the importance
of this amino acid in Mb is not shared in the distal pocket
of Lba.

Role of the B10 Amino Acid in Other Leghemoglobins.
Tyr is not conserved at position B10 in all leghemoglobins.

Other species, most notably lupin, contain Phe at this site
(50). To examine the importance of this naturally occurring
TyrfPhe replacement, IR spectra for cowpea LbII (TyrB10)
and lupin LbI (PheB10) were measured (Figure 8). Cowpea
LbII has an IR spectrum identical to that of soybean Lba,
with a single conformer at 1948 cm-1 (Table 3). Both of
these Lbs have a distal HisE7-TyrB10 pair, nearly identical
rate constants for oxygen binding (Table 3) (51), and pre-
sumably similar mechanisms for regulating ligand binding.

As shown in Figure 5, replacing TyrB10 with Phe causes
profound changes in the IR spectrum of soybean LbaCO,
leading to the appearance of a large low-frequency band
centered at 1923 cm-1 and the retention of a peak at 1950
cm-1. The IR spectrum of lupin LbICO is different from
those of both native soybean Lba and its PheB10 mutant.
However, a major band (∼75%) is observed at 1951 cm-1,
which is similar in position to that for cowpea and soybean
LbCO. Thus, in lupin LbICO there must be constraints other
than TyrB10 that position HisE7 in a conformation that allows
only weak hydrogen bonding to bound CO. Harutyunyan et
al. (52) have suggested that the HisE7 side chain in the lupin
LbICO crystal structure appears to be fixed in position by a
lattice of hydrogen bonds linking Nδ of the imidazole side
chain to well-defined water molecules, GluE3, and one of
the heme propionates. However, these constraints do not
appear to be as strong as those imposed by TyrB10 in the
other Lbs, because lupin LbICO also shows minor low- (7%)
and high-frequency (18%) bands at 1920 and 1962 cm-1,
respectively (Table 3).

The TyrB10-HisE7 Combination Destabilizes Bound Ligands.
The side chain at the B10 position in Mb is close enough to
make direct contact with bound ligands. However, multiple
νCO bands and heterogeneous ligand binding are observed
for the single TyrB10 Mb mutant, and there is a net increase
in νjCO and the average value ofkO2 (Table 2; Figure 9A).
Draghi et al. (13) have proposed that TryB10 and HisE7

FIGURE 7: IR spectra of position E11 mutants of (A) sperm whale
MbCO and (B) soybean LbaCO. Spectra for the wild-type proteins
are shown as solid lines. When ValE11 is replaced with Leu (‚‚‚) or
Phe (- - -) in Mb, the resulting IR spectra of mutant proteins are
different from the wild-type MbCO spectrum. When LeuE11 in
LbaCO is replaced with Val (‚‚‚) and Phe (- - -), there is no change
in the measured IR spectrum. The spectra for the MbCO mutants
were taken from Li et al. (18).

FIGURE 8: IR spectra of the CO complexes of leghemoglobins from
different species of plants. Both cowpea (‚‚‚) and soybean (s) Lb
have a HisE7-TyrB10 distal pair and identical IR spectra. Lupin (- - -)
Lb has a HisE7-PheB10 distal pair and shows a different IR spectrum
with additional minor low- and high-frequency peaks.

Table 3: IR CO Stretching Bands for Three Leghemoglobins at pH
7 and 25°C

protein
ν0

a (%)
(cm-1)

ν1,2 (%)
(cm-1)

ν3 (%)
(cm-1)

νCO
b

(cm-1)
kCO

(s-1)
kO2

(s-1)

soybean Lba 1948 (100) 1948 0.0084 5.6
cowpea LbII 1947 (100) 1947 0.01c 5.5c

lupin LbI 1962 (18) 1951 (75) 1919 (7) 1951 0.014c 20c

a,b See footnotesb andc of Table 1.c Data taken from Gibson et al.
(51).
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sterically “clash” so that neither side chain can easily
hydrogen bond to bound ligands. Replacement of the distal
His with Gln allows the phenol side chain to interact
favorably and directly with bound ligands in the TyrB10GlnE7

Mb double mutant (Figure 9B; Table 2;13 and references
therein). When HisE7 is replaced with Leu in TyrB10 MbCO,
a major (86%) low-frequency band appears at 1936 cm-1

(Figure 9C), and the value ofkO2 for the TyrB10LeuE7 double
mutant is markedly decreased compared to the corresponding
rate constants for the single E7 or B10 Mb mutants (Table
2; 13). Thus, in the absence of a distal His, TyrB10 can interact
directly and favorably with bound ligands in mammalian
Mbs.

A major conclusion from the IR and ligand-binding data
in Table 2 is that the TyrB10-HisE7 combination weakens
hydrogen bonding to bound ligands in both Lba and Mb. In
Mb, the two residues clash sterically, causing multiple
conformations (IR bands) and kinetic phases (Figures 5 and
9; 13). In Lba, the two residues appear to interact specifically
forming a single conformation, as judged by the narrow
symmetric CO IR band. As described below, the simplest
explanation is that TyrB10 “pulls” HisE7 slightly away from
the bound ligand by forming a hydrogen bond between the
phenolic proton and the nonbonded electrons of the Nδ of
HisE7 (Figure 10A), an interpretation that is supported by
modeling of the crystal structure of acetate-metLba (4) and
by high-resolution NMR data (37, 38, 53).

DISCUSSION

Structural Model for HisE7-TyrB10 Interactions in Lba.The
experimental evidence in favor of a TyrB10-HisE7 interaction
in Lba is threefold. (1) MultipleνCO bands appear when
TyrB10 is replaced by almost any other amino acid. These

results suggest that in native Lba the phenol side chain holds
HisE7 in a fixed location farther away from bound ligands
than the position of HisE7 in Mb. In almost all of the Lba
B10 mutants, a low-frequency band is observed at∼1925
cm-1, indicating that a stronger hydrogen bond can form
between HisE7 and bound CO in the absence of TyrB10. (2)
The B10 Lba mutations also cause significant decreases in
kO2, indicating a strengthening of the hydrogen bond to bound
O2 when HisE7 is “freed” from its interaction with the phenol
side chain of TyrB10. (3) Replacement of HisE7 with large
aliphatic residues (Val and Leu) causes a 20 cm-1 increase
in the peak position of the majorνCO band, indicating loss
of hydrogen bonding to bound ligands. However, the
increases in the rate constants for O2 dissociation from
these LbaO2 mutants are only 5-fold, as compared to the
200-500-fold increases observed for the ValE7 and LeuE7

replacements in sperm whale Mb. Thus, the hydrogen-
bonding interaction between bound ligands and HisE7 in wild-
type Lba is significantly weaker than in Mb, presumably due
to interactions with TyrB10.

In the absence of crystal structures of CO and O2

complexes of soybean Lba, structural modeling was used to
investigate possible interactions between TyrB10 and HisE7

that would explain the IR spectra of native and mutant
LbaCOs and the rates of O2 dissociation from the corre-
sponding oxygenated complexes. In the crystal structure of
acetate-bound soybean metLba, TyrB10 is much closer to
HisE7 than to the heme iron or the first two atoms of the
bound ligand (4). The O atom of the TyrB10 side chain is
∼3.3 Å away from the edge of the imidazole ring of HisE7

and>4.0 Å away from the second ligand atom. Even in the
absence of a bound ligand, the phenol side chain cannot move
closer to the iron atom unless there is substantial movement
of the entire B helix toward the heme plane, and such a large-
scale movement would also require significant movement
of the E helix. However, the TyrB10 and HisE7 side chains
both appear to be flexible enough to interact with each other
while allowing only the E7 imidazole to interact directly with
bound ligands.

The model shown in Figure 10A was generated from the
acetate-bound metLba crystal structure (4) by using the
“flipped” orientation of the E7 imidazole ring described by
Mabbutt et al. (37, 38) and then rotating both the HisE7 and
TyrB10 side chains about their CR-Câ and Câ-Cγ bonds
in the program O without violating van der Waals restraints.
In this conformation, the Nδ atom of HisE7 can accept a
hydrogen bond from the OH group of TyrB10, and the Nε-H
group of HisE7 can still donate a hydrogen bond to the bound
ligand. This model predicts one HisE7 conformer for the CO
complex because only one orientation could be found that
allows formation of a strong hydrogen bond between HisE7

and both the TyrB10 side chain and the bound ligand. In
support of the model, the IR spectrum of LbaCO shows a
single, narrow band with a peak at a slightly higherνCO than
that for Mb. The model is also consistent with multipleνCO

peaks in the IR spectra of TyrB10 mutants of LbaCO because,
in the absence of hydrogen bonding to the phenol side chain,
HisE7 is “free” to adopt other orientations.

The model in Figure 10A requires a 180° rotation of the
HisE7 side chain about the Câ-Cγ bond compared to the
orientation reported for the metLba acetate (4) and nicotinate
(54) crystal structures. As mentioned previously, this “flipped”

FIGURE 9: IR spectra of sperm whale MbCO mutants with Tyr at
position B10. (A) IR spectra for wild-type MbCO (‚‚‚) and for the
TyrB10 single mutant (s), which shows a major high-frequency
band, suggesting that TyrB10 prevents HisE7 from stabilizing bound
CO. In contrast, major low-frequency bands are observed for MbCO
mutants containing the combination of (B) TyrB10 and GlnE7 (‚‚‚)
or (C) TyrB10 and LeuE7 (‚‚‚). The corresponding single-mutants
GlnE7 and LeuE7 show peaks at much higher frequencies. The results
in panels B and C show that TyrB10 can hydrogen bond directly to
bound CO in the absence of HisE7.
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conformation is supported by NMR investigations by Wright’s
group, who showed that the imidazole ring of HisE7 is
oppositely oriented in LbaCO compared to that found in
MbCO (37, 38). In solution, the Cε-H proton in Lba is
closer to the heme than the Cδ-H proton, whereas the
reverse is true in MbCO (38). The C-H proton resonances
for the side chains of HisE7 and TyrB10 can be calculated
using a combination of the program SHIFTS (42), the PDB
files for the observed crystal structure, and the model in
Figure 10A. These calculated chemical shifts can then be
compared to those reported by Morikis et al. (53) for LbaCO.

The chemical shifts calculated for the HisE7 Câ protons
in our model of LbaCO are 2.72 and 2.89 ppm and nearly
identical to the values observed experimentally by Morikis
et al. [2.73 and 2.88 ppm (53)]. The calculated Câ-H shifts
for the acetate-metLba structure are 3.26 and 3.27 ppm,
indicating that the side chain is further from the heme plane
when the larger acetate ligand is bound. More importantly,
the predicted chemical shifts of the HisE7 Cδ and Cε protons,
6.75 and 4.82 ppm, respectively, are much closer to the
observed values of 7.15 and 5.26 ppm for LbaCO in solution
than those calculated for acetate-metLba crystal structure,
7.04 and 8.11 ppm. The observed values for the HisE7 Cδ
and Cε protons require that the imidazole ring be rotated
180° with respect to the orientation found in the metLba
(Figure 2) and sperm whale MbCO (Figure 10B) crystal
structures (37, 38). The predicted chemical shifts of the
TyrB10 Câ, Cγ, and Cδ protons for the model LbaCO
structure (2.54, 3.00, 6.58, and 6.38 ppm) are also closer to
the observed values [2.66, 2.42, 6.4, and 6.03 ppm (53)] than
those calculated for the acetate-metLba crystal structure
(2.79, 3.32, 7.09, and 6.69 ppm).

Thus, our structural interpretation in terms of direct
hydrogen bonding between HisE7 and TyrB10 is consistent
with all reported IR, ligand binding, and solution NMR data.
However, more systematic modeling using molecular dy-
namics and energy minimization is needed. The ultimate
verification of the model will come with NMR or crystal
structure determinations of the wild-type LbaO2 and LbaCO
complexes.

The unusual properties of ArgE7 Lba can also be rational-
ized by a distal pocket structure similar to that proposed for
the native protein (Figure 10C). In Lba, the guanidino group
can potentially swing inward and form hydrogen bonds with
both the phenol side chain of TyrB10 and bound ligands. In
the case of the relatively apolar FeCO complex, the interac-
tion with the bound ligand is weak, and 15-20% of the
population of mutant conformers has an apolar pocket with
νCO g 1960 cm-1. However, in combination with the TyrB10

side chain, the partial negative charge on the ligand atoms
of the FeO2 complex appears to cause ArgE7 to adopt a
completely “in” conformation (Figure 10C). As a result, the
ArgE7 mutation in LbaO2 causes a 30-fold decrease inkO2,
producing a protein with ultrahigh O2 affinity (P50 e 1 nM;
Table 2).

Physiological Importance of the B10 Amino Acid.The role
of the B10 amino acid in regulating ligand binding in Hbs
is now widely accepted (43, 55, 56). As described in this
work, the naturally occurring TyrB10 side chain in soybean
and cowpea Lb serves to “trap” HisE7 in a single conforma-
tion that provides weaker stabilization to bound ligands than
is observed in mammalian Mbs. This helps Lb maintain an
oxygen affinity appropriate for its physiological function.
In almost all mammalian Mbs and Hbs, the B10 residue is

FIGURE 10: LbaCO model structures and wild-type MbCO. (A) Model for LbaCO. The acetomet-Lba structure (PDB entry 1BIN) was
used as a starting point to explore possible interactions between TyrB10 and HisE7, which would be consistent with the measured IR spectra,
kinetic parameters, and NMR data (Tables 1 and 2;37, 38, 53). Minor changes to the side-chain torsion angles of these residues were made
in the programO, allowing formation of a hydrogen bond between the TyrB10 hydroxyl proton and the HisE7 Nδ nonbonded electron pair.
No highly unfavorable van der Waals overlaps were created in the process. The proposed hydrogen bonds are shown in green. (B) Crystal
structure of MbCO (PDB 2MGK) (11). HisE7 has more freedom of movement within the distal pocket of Mb to form an ideal hydrogen
bond with the bound ligand than in the proposed Lba structure. (C) Model for ArgE7 LbaCO. HisE7 was replaced with Arg in the program
O, and then the rotomers for TyrB10 and ArgE7 were searched until a terminal N atom of the guanidinium group was within hydrogen-
bonding distance of the O atom of the TyrB10 side chain. This model shows a possible conformation where the guanidinium group of ArgE7

is held inside the distal pocket with hydrogen bonds to the first or second ligand atom and the TyrB10 side chain.
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a Leu. As a result, the distal pocket has significant “empty”
space, and dissociated ligands can move easily toward the
protein interior underneath thesec-butyl side chain, occupy-
ing what is called the “B” geminate state in laser photolysis
experiments. This empty space adjacent to the bound ligand
appears to be conserved to facilitate ligand capture and
release in an otherwise relatively rigid protein structure. It
may also be conserved to allow formation of the four-atom
peroxynitrite intermediate that occurs during the dioxygen-
ation of NO by bound O2, a process that plays a key role in
detoxifying NO in both myocytes and circulating blood
(57-60). Introduction of PheB10, TyrB10, or TrpB10 into
mammalian Mbs and Hbs fills this empty space, inhibiting
the rate of both ligand binding and NO dioxygenation (60).

The presence of both HisE7 and TyrB10 in Hbs is unusual
and appears to require a larger and more flexible active site.
In the case of sperm whale Mb, the introduction of a Tyr at
the B10 position leads to the formation of an unstable protein
with kinetic heterogeneity and multipleνCO bands. When
the distal His is replaced with more flexible amino acids in
Mb double mutants, the TyrB10 side chain appears to interact
favorably with bound ligands (Figure 9; Table 2). Strong
hydrogen bonds between bound ligands and TyrB10 occur in
many natural ultrahigh affinity Hbs, such asAscarisHb, and
most of these proteins have Gln at the E7 position (13).
AscarisHb resembles Lba in having a B10 Tyr, but it has a
more compact distal heme pocket such that if GlnE7 is
replaced with His, the resulting protein is hexacoordinated
unlike wtLba (61). CO-boundAscarisHb also exhibits close
proximity between the B10 phenolic proton and bound CO,
suggesting that TyrB10 in AscarisHb interacts directly with
the bound ligand to increase affinity (61), whereas TyrB10 in
Lba has an indirect and destabilizing effect. Hence, variation
in the positioning of the TyrB10 as a function of E7 sub-
stitutions and the resulting alteration in the flexibility of distal
heme pockets impart important physiological functions.

Correlations of CO IR Stretching Frequencies and Rate
of O2 Release by Lba.Phillips et al. (19) showed that there
is a strong, inverse, linear correlation between the electro-
static field adjacent to bound CO and its stretching frequency.
Recently, Franzen (32) has presented a more sophisticated
analysis of the hydrogen-bonding and electrostatic potentials
in these proteins. Both types of analyses demonstrate
unequivocally thatνCO is an inverse measure of the hydrogen-
bonding potential and/or electric field adjacent to the bound
ligand atoms. Low values ofνCO correspond to positive elec-
trostatic fields and strong hydrogen bond donation, whereas
high values ofνCO correspond to no hydrogen bonding and/
or negative electrostatic fields.

Surprisingly, there is only a weak correlation between the
average value ofνCO and the rate of CO dissociation,
primarily because the FeCO complex is relatively nonpolar
and the variation inkCO is small [e30-fold between the
various Mb and Lba mutants listed in Table 2 (18, 19)]. In
contrast, a strong linear correlation is observed between the
measured values ofνjCO and the logarithm of the rate constant
for O2 dissociation (Figure 11;19)), presumably because the
FeO2 complex is highly polar. A stabilizing positive elec-
trostatic field and hydrogen-bonding potential provides a
simple explanation for the 3000-fold variation inkO2 for Mb
distal pocket mutants. A significantly poorer correlation (r2

) 0.50) betweenνjCO and log (kO2) is observed for the series

of Lb mutants listed in Table 2 (Figure 11). The cause of
the variance is flexibility of the distal pocket, particularly
the conformation of the E7 side chain, which probably
changes between the CO and O2 complexes of Lba.

ArgE7 Lba provides a good example of large apparent
differences between the O2 and CO complexes. The IR
spectrum of the CO complex shows conformational hetero-
geneity with a broad peak at moderately low frequency and
another broad peak at moderately high frequency. Because
νjCO is 1946 cm-1, only a small decrease inkO2 is predicted.
However, the observed rate constant decreases 30-fold,
suggesting strongly that the ArgE7 side chain has completely
swung into the distal pocket, stabilizing bound O2 due to its
partial negative charge (Figure 10C). A distal Arg side chain
has been shown to stabilize bound oxygen inAplysia
limacina Mb (62) and in the DOS-oxygen sensor protein
from Bradyrhizobium japonicum, which has a very low rate
of O2 dissociation (63).

The nearly parallel fitted lines in the plots of log(kO2)
versusνCO shown in Figure 11 demonstrate that the general
electrostatic/hydrogen bonding mechanism for preferentially
regulating O2 dissociation applies to both Mb and Lba. The
line is displaced in Lba probably due to proximal stabilization
of ligand binding, causing lowerkO2 values. The electrostatic
mechanism and the proposed structure in Figure 10A explain
qualitatively all of the large changes produced by distal
pocket mutations in Lba. Replacement of the distal His with
large apolar residues that exclude water from the distal pocket
cause increases inνCO and kO2 (Table 2). Replacement of
TyrB10 with apolar amino acids causes the appearance of
strong low-frequencyνCO bands and decreases inkO2 (Table
2) because the distal His is free to adopt multiple conforma-

FIGURE 11: Correlation between the stretching frequencies of CO
bound to wild-type Lba, Mb, various mutant proteins, and their
corresponding oxygen dissociation rate constants. There is a strong
linear correlation (r2 ) 0.82) betweenνjCO and log(kO2) for the 31
different sperm whale Mbs (open squares), which are listed in Table
2 and described in Phillips et al. (19). A significant but poorer
correlation (r2 ) 0.50) is observed betweenνjCO and log(kO2) for
the series of Lba mutants listed in Table 2 (solid squares).
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tions, some of which form strong hydrogen bonds with bound
ligands. When both TyrB10 and HisE7 are replaced with apolar
amino acids, the resulting Lba double mutant shows an IR
spectrum identical to that of Mb with a hydrophobic distal
pocket and a large O2 dissociation rate constant.
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